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Control Allocation for Overactuated Systems

Michael W. Oppenheimer and David B. Doman

I. ABSTRACT

Much emphasis has been placed on overactuated systems
for air vehicles. Overactuating an air vehicle provides a
certain amount of redundancy for the flight control system,
thus potentially allowing for recovery from off-nominal
conditions. Due to this redundancy, control allocation algo-
rithms are typically utilized to compute a unique solution
to the overactuated problem. Control allocators compute
the commands that are applied to the actuators so that a
certain set of forces or moments are generated by the control
effectors. Usually, control allocation problems are formulated
as optimization problems so that all of the available degrees
of freedom can be utilized and, when sufficient control power
exists, secondary objectives can be achieved. In this work, a
survey of control allocation techniques will be given.

II. INTRODUCTION

Conventional aircraft utilize an elevator for pitch control,
ailerons for roll control, and a rudder for yaw control.
As aircraft design advances, more control effectors (some
unconventional) are being placed on the vehicles. In some
cases, certain control effectors may be able to exert sig-
nificant influence upon multiple axes. When a system is
equipped with more effectors than axes to control, the system
may be overactuated or redundant. The allocation, blending,
or mixing of these control effectors to achieve some desired
objectives is the control allocation problem.

Due to overactuation and coupling of control surface
effects, it is difficult to determine an appropriate method
of how to translate a flight control command into a control
surface command. In addition, rate and position limits of the
control surfaces must be considered in order to achieve a
realistic solution. Not only is the mixing of control surface
effects critical, it is also desired to enable the aircraft to
recover from off-nominal conditions, such as a failed control
surface, when physically possible. In reconfigurable control
systems, a control allocation algorithm is needed to perform
automatic distribution of the control power requests among
a large number of control effectors, while still obeying the
rate and position limits of the actuators and to potentially
allow recovery from off-nominal conditions.

Some of the simplest control allocation techniques are

explicit ganging, pseudo control, pseudo inverse, and daisy
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chaining. Unfortunately, each suffers from difficulty in guar-
anteeing that rate and position limits will not be violated
and some can be difficult to apply due to the need to
derive a control mixing law a priori. Another control allo-
cation method, called direct allocation [1], finds the con-
trol vector that results in the best approximation of the
command vector in a given direction. Unconstrained least
squares control allocation methods, that account for rate
and position limits, through the use of penalty functions,
have also been developed [2]. One of the first instances
of linear programming based control allocators was from
Paradiso [3]. In this work, Paradiso developed a selection
procedure for determining actuator positions that was based
on linear programming and limited actuator authority. More
recently, the control allocation paradigm has been posed as
a constrained optimization problem [4]. In this work, the
control allocation problem was split into two sub-problems.
The first was the error minimization part, which attempts
to find the control vector, such that the control effector
induced moments or accelerations match the desired mo-
ments or accelerations. If multiple solutions exist to the
error minimization problem, the second problem attempts
to find a unique solution by driving the control vector to
a preference vector and optimizing a secondary objective.
The linear control allocation problem has been extended to
an affine problem [5] to account for nonlinearities in the
moment-deflection curves. Quadratic programming has also
been used in the past [6]. An excellent paper discussing
control allocation, by Bodson [7], provides a glimpse into
numerous control allocation techniques.

This paper will cover some of the more popular linear
control allocation techniques. The objective is to present the
methods in sufficient detail that the readers can utilize the
techniques.

III. LINEAR CONTROL ALLOCATION

The linear control allocation problem can be posed as
follows: find the control vector, 6 € R", such that

B6 - ddes (1)

subject to
émini S 5 S am(m

5 < S &

where B € R™*"™ is a control effectiveness matrix, the
lower and upper position limits are defined by &,,in € R”
and 0,,,: € R", respectively, § € R™ are the control
rates, Smaw € R"™ are the maximum control rates, dg.s are
the desired moments or accelerations (typically for inner-
loop control laws, dges € R3), n is the number of control



effectors, and m is the number of axes to control. Equation 2
provides the position and rate limits for the control effectors.
In a digital computer implementation, the rate limits are
converted to effective position limits. The combined limits
become the most restrictive of the rate or position limits and
are specified as

d<d<é 3

where

min (5,,“”, 0+ At(.smaw)

max (5mm, 65— Au'smm) @

& <

Here, § € R", § € R™, and 8, § are the most restrictive
upper and lower control effector limits, respectively.

A necessary condition for a system to be overactuated is
the number of columns of B, n, must be greater than the
number of rows of B, m. The true test of overactuation is that
the number of linearly independent columns of B be greater
than the number of rows of B. For inner-loop control laws,
the B, or control effectiveness, matrix typically becomes

oL 9L  OL
001 Q2 90y,

B= oM oM . 9N (5)
= | 95, 95 96,
N oN  oN
001 0d2 00y,

where L, M, and N are the rolling, pitching, and yawing
moments, respectively.

The control allocation problem can be illustrated with a
simple example. Consider the following problem: find §; and
0o such that

ddes = 361 + 02 (6)

In this case, there is one objective function, dg.s € R' and
two controls. Using the form shown in Eq. 1 yields

B=[3 1] 6=[d& &]" @)

Let the most restrictive limits be

—“1<6 <1 -1<6,<1 ()

Let d4es = 2. Then, this problem could be solved in a
number of ways, for example, 1 = 0 and d2 = 2, or
01 = %andég = 0, or 6 = —3 and 6, = 11, or
many others. Graphically, this situation becomes as shown
in Figure 1. The control allocation problem is to find 1, d2
such that dg., = 301 +92 and the constraints are not violated.
The solution is the intersection of the hyperspaces of the
constraints and the equation dges = 301 + 2. For dges = 2
or 3, multiple solutions exist. For dg.; = 4, only one solution
exists, while for dges = 5, no solutions exist. When only one
solution exists, we simply select that solution. When multiple
solutions exist, a method to pick one is necessary. When no
solutions exist, a method to minimize the error, between d g
and 391 +0 is required, in some logical sense. This illustrates
the control allocation problem.

Equations 1, 3, and 4 define the linear control allocation
problem. The objective now is to determine methods which

5 2\3:3
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Fig. 1. Example of Control Allocation.

allow computation of the control effector vector &, while pos-
sibly taking into account effector rate and position limits. The
following discussion looks at different methods, which can
be utilized to either reduce the dimension of the overactuated
system to the point that a square allocation problem results
or to directly solve the overactuated linear control allocation
problem.

A. Explicit Ganging

In this approach, an a priori method is used to combine or
gang the effectors to produce a single effective control from
multiple devices. Note that historically, ganging was done
with cables, pulleys, or other mechanical means. On modern
aircraft, fly-by-wire is used and the ganging is performed
in software. The goal is to find a matrix G, that relates the
pseudo controls, dpseudo, to the actual controls, § such that

6= G(spseudo (9)

The vector dpseudo are the pseudo controls, so named be-
cause some or all components of this vector are not physical
control surfaces on the vehicle. For example, consider a
vehicle that has left and right ailerons for roll control,
0o, € R! and dar € R!, a single rudder for yaw control,
d, € R, and a single elevator for pitch control, §, € R'. A
priori, a ganging law is constructed to produce a single roll

control device. One possibility is to let
0o = 0.5(0q, + day) (10)

where §, € R! is the single roll control device. Therefore,
the full ganging law becomes

0,

o 1007 ¢y
San | | 100 o
e ~lo10 ge an
O 001 "
or
0= G‘spseudo (12)

Here, the reason for the term pseudo controls becomes clear
because one of the elements of dpseydo, Namely, &g, is not
a physical control, instead, it is a linear combination of two



physical control effectors, d,, and d,,. Then, the control
allocation problem becomes find pseyd0. such that

Bé = ddes = BG(spseudo = ddes (13)

Solving this allocation problem for d,scudo and using Eq. 12
yields the physical control effector commands. Typically,
explicit ganging is used when it is obvious how to combine
the redundant control effectors.

It is important to point out that this method can be used to
reduce the control space dimension of an overactuated sys-
tem. As previously mentioned, the inner-loop aircraft control
law typically contains three objective functions, namely that
the moments produced by the controls are equal to a set of
desired moments (dges). In the example problem, § € R4,
so that Bd = dg.s is a nonsquare allocation problem. After
employing the explicit ganging methodology, dscudo € R?
so that BGOpseudo = dges 18 a square allocation problem.
Hence, the dimension of the control space is reduced from
4 to 3.

B. Pseudo Inverse

The pseudo inverse method is a constrained optimization
technique that requires a pseudo inversion of the generally
nonsquare B matrix. The pseudo inverse solution is the two-
norm solution to the control allocation problem and can be
formulated as follows:

. 1
min J = min 5(5 +¢)TW(8 +¢) (14)
subject to

Bo = dges (15)

where W € R™ " is a weighting matrix and ¢ € R" is
an offset vector used to represent an off-nominal condition
with one or more control effectors. To solve this problem,
first find the Hamiltonian (H) such that

H = % (6TW6 + W6 + 6TWe + cTWc)
+ €(B6 - ddes)

where & € R" is an as yet undetermined Lagrange multiplier.
Taking the partial derivatives of H with respect to § and &,
setting these expressions equal to zero, and rearranging, gives

(16)

%—I; = Wé + %(cTW)T + %Wc + (BT =0 an
— W§ =-Wc-BT¢T
and
%—I;:Bzi—ddeszo (18)
= B = dges = BW 'W4 = dy,
Substituting Equation 17 into Equation 18 yields
BW ' [-We — B¢"] = dges (19)
Solving for £7 in Equation 19 yields
¢" = —~(BW 'B”)[dyes + Be] (20)

Substituting Equation 20 into Equation 17 produces

Wé = —We + BT (BW'BT)"[d e, + Be| 1)
Simplifying Equation 21 gives the desired result
d=—c+W 'B"BW 'BY) !dy, + Bc|
(22)

= —c+ B*[dges + Bc]

where B is the pseudo inverse of B and the superscript ()
indicates a pseudo inverse operation. Equation 22 gives the
pseudo inverse solution. It should be noted that if an effector
is offset, two items must be taken into account, position offset
(—c) and the moments generated by the offset (Bc). For the
position offset, the negative of the locked position is placed in
the corresponding entry of the ¢ vector. For example, assume
there are four controls and control number 3 is stuck at +5
degrees. Then, the ¢ vector would become
}T

c=[0 0 -5 0 (23)

The weighting matrix, W, can be selected to incorporate
the position limits of the control effectors. For example, a
diagonal element of W can be selected to be a function of
the corresponding component of d, so that the weighting
function approaches oo as the control approaches a physical
limit. There are no guarantees that commands to the control
effectors will not exceed the position limits; however, in
practice the method is effective in constraining the positions
of the controls. As a final note, this method can be useful in
generating preference vectors for more complex optimization
based methods for the purpose of robustness analysis.

C. Redistributed Pseudo Inverse

The redistributed pseudo inverse works in a fashion sim-
ilar to the pseudo inverse. The difference is that now the
process 1is iterative and position saturated control effectors
are removed from subsequent pseudo inverse solutions. The
first step is to solve the control allocation problem using the
pseudo inverse solution in Eq. 22 with c initially a vector of
all zeros. If no controls exceed their minimum or maximum
position limits, then the process stops and the solution from
Eq. 22 is used. However, if one control saturates, the problem
is solved again, this time zeroing out the column of the B
matrix corresponding to the saturated control and placing
the negative of the saturated value in the vector ¢. One
must be careful here. When saturation occurs, there are two
B matrices in Eq. 22, one for the pseudo inverse solution
W 'BT(BW 'BY)~! and one for the offset or saturated
contribution Be. When zeroing out a column corresponding
to a saturated effector, only the pseudo inverse B matrix
is modified, while the Bc term uses the original B matrix.
Consider the following example of a redistributed pseudo
inverse control allocation problem. Let

2 -2 -2 -1

B=|1 1 -3 2| dges=[5 1 1]
9 —2 -1 -1
(24)
—0.75 < 412,34 <0.75 (25)



In this example, there are 3 objective functions (3 rows in
B), four control effectors (4 columns in B), each control has
the same lower and upper position limits, and the weighting
matrix is W = L. The first step in the redistributed pseudo
inverse solution is to compute Eq. 22. The results are

5 =Blds, == [ 055 023 05 —0.86]  (26)

where the ¢ vector was removed since it currently contributes
nothing. Since §4 exceeds it limit, force 4 to —0.75 and zero
out the fourth column of the B matrix. Now, calculate the
new pseudo inverse solution using

6=—c+B  [diws —Bc] =] 6875 3125 .5 —.75 ]
27
where B, is the reduced B matrix formed by zeroing out
the column corresponding to the saturated control effector.
The results show that 4 is now at its most negative limit, as
expected, and no other control effectors exceed their limit.
The iterations stop and the result of the redistributed pseudo

inverse calculation is

6= [ 6875 3125 5 —-.75 }T (28)

A check of this result gives
B[ 6875 3125 5 —.75 }T = [ 05 1 1 ]T = dyes
(29)

Thus, the calculated control settings do provide the desired
commands. In this example, only 2 iterations of pseudo
inverse calculations were performed. If the control effector
setting computed in Eq. 27 had one or more controls ex-
ceeding their position limits, then the process of zeroing out
columns in the B matrix would continue until all controls
are at their limits (either positive or negative) or a feasible
solution is found (one where remaining controls do not
exceed position limits).
D. Daisy Chaining

The daisy chain assumes a hierarchy of control effectors.
In this method, when one control or a group of controls
saturates, there is an error between the commanded moments
or accelerations and those produced by the control effectors.
The daisy chain method would then utilize another control
to produce the required moments or accelerations that are
lacking due to the saturation of a control effector. Figure 2
shows an example of daisy chain allocation. In this example,
the goal is to produce a desired pitch acceleration, given
by ¢4es- There are three controls that can produce pitching
moment, an elevator (J.), a bodyflap (6 f), and a canard ().
The daisy chain procedure works as follows: the primary
control effector, §, in this case, is commanded to produce the
desired acceleration. If the elevator can produce this accelera-
tion, then nothing else happens and the bodyflap and canard
are not utilized. However, if there is a moment deficiency
between the acceleration that the elevator produces and the
desired acceleration, the control effector, which is second
in line, namely the bodyflap, is commanded to produce an
acceleration equivalent to the acceleration deficiency. If the
bodyflap can produce the required acceleration, then the ca-
nard does nothing. However, if the bodyflap cannot produce

ches 1 | 89
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Fig. 2. Example of Daisy Chain Allocation.

the required acceleration, then the canard is commanded to
produce the difference between the commanded acceleration
and the accelerations produced by the elevator and bodyflap.
This method is valid for any number of control effectors.

E. Direct Allocation

The direct allocation method, by Durham [1], is a con-
strained control allocation method aimed at finding a real
number, p, and a vector, d1, such that

Bal = pddes (30)

and B
0<0<6

If p>1,1et § = %51. If p < 1,let & = ;. In order
to use this method, an attainable moment set [9] (AMS)
must be established. The AMS is of the dimension of dgj.s
and for linear systems of the form of Eq. 30, consists of
a convex hull with planar surfaces. Physically, p represents
how much a control power demand must be scaled to touch
the boundary of the AMS. When p < 1, the moment demand
lies within the AMS and the allocator supplies the demand.
When p > 1, the control power demand exceeds supply and
the demand is scaled back to touch the boundary of the AMS.
Algorithms exist for generating the AMS for the 3 moment
problem [9] and the direct allocation problem extends to
nonlinear problems of the form f(8) = pdges. Unfortunately,
the construction of the AMS for a nonlinear problem can be
extremely difficult.

€19

F. Error and Control Minimization

The objective of the error minimization, control law com-
mand feasibility, or control deficiency problem is to find a
vector §, given a matrix B, such that

minJ = [BS — | (32)

is minimized, subject to
§<§<é (33)

The norm used would depend on the type of algorithm
used to perform the minimization. When used with linear



programming solvers, the error minimization problem is
specified as

II%iIlJ = [|Bd — dgesl1 (34

subject to the constraints specified in Eq. 33. This can
be transformed into the standard linear programming prob-
lem [4]

. 1
mémJ—[O oo 01 1}_55 (35
subject to
O 0 ]
-6 -6
o > [ (36)
—Bd + 4, —dges
Bé + 6, dyges

where 6, € R™ is a vector of slack variables. Note that
the slack variables must be positive, but are otherwise
unconstrained. Individually, the slack variables represent how
much control power demand exceeds supply in any given
axis. If J = 0, then the control law command is feasible,
otherwise it is infeasible. The solution to Egs. 35 and 36
can be obtained with a linear programming solver.

The control minimization or control sufficiency problem
is a secondary optimization. If there exists sufficient control
authority to satisfy Eq. 34, that is, if J = 0, then a secondary
objective may be achieved. The ability to do this is a direct
result of the overactuated system, in that multiple solutions
to the problem may exist and one solution may be preferred
over another. The control minimization is posed as follows:

min.J = wls, (37)
subject to

0, 0

-6 -5

0 > 9
—5+36, -5, (38)
8+, s,

Bé = dges

where W, € R™*1 §, € R™, and §, € R™ is the preferred
control effector position vector. So, the first requirement is
that the moment or acceleration demand is met, followed
by selecting the control effector positions which satisfy
the moment demand and minimize a secondary objective.
Many secondary objectives exist, for example, minimum
control deflection, minimum wing loading, minimum radar
signature, minimum drag, minimum actuator power, and
others. A few of these secondary objectives are discussed
in [4].

G. Minimum 2-Norm for Robustness Analysis

One of the drawbacks of the optimization based linear
programming methods is that it is impossible to represent this
allocator in a useful format. The control allocation algorithms
have dges as an input and § as an output. In the pseudo

inverse development, a direct relationship exists between
inputs and outputs. When ¢ = 0 and W = I, Eq. 22 becomes

6 =B"(BB") '[dges] = Bdues (39)

In this case, the control allocator is simply a gain matrix
given by B®. This is useful for stability or robustness analysis
because a model of the control allocator, namely Bﬁ, has been
determined. When linear programming control allocators are
utilized, no such model exists and the relationship between
inputs (dg.s) and outputs (4) is more complicated. In this
case, determining stability or robustness of closed loop sys-
tems is not feasible. Fortunately, there are situations where a
linear programming control allocator can be modelled. If no
control effectors exceed their rate and position limits, then
driving the preference vector in Eq. 38 to the 2-norm (or
pseudo inverse solution), given by Eq. 39, provides a method
to model the allocator. This is because the solution to the
control allocation problem will be the 2-norm solution and
hence, the linear programming control allocator block can
be replaced by B for use in stability or robustness analysis.
When control effectors exceed rate or position limits, this
model is no longer valid. Note that this technique can also
be used in the mixed optimization problem described in the
next section.

H. Mixed Optimization

The mixed optimization problem is a combination of
the control and error minimization problems. The mixed
optimization problem is posed as follows: given a control
effectiveness matrix B and a preferred control vector 4, find
a vector § such that

J =Bd — dges| +v[|6 — 5, | (40)

is minimized, subject to § < § < 5 where v € R" is a
factor which weights the relative importance of the error and
control minimization problems. Bodson [7] has converted the
mixed optimization problem into a standard linear program.

1. Affine Control Allocation

A linear control allocation problem (as described in Eq. 1),
suffers from the fact that it assumes that the individual entries
in the control effectiveness (slopes of moment-deflection
data) pass through the origin. In a local sense, this is typically
not the case and it is directly attributable to nonlinear effects
in the moment-deflection relationship. A more accurate so-
lution to the control allocation problem is obtained using an
affine control allocation problem formulation [5], that is, one
of the form: find d such that

Bd + € = dges (41)

is minimized, subject to

0<6<4 (42)

where € is an intercept term that provides a more robust
control allocation algorithm when the moment-deflection
curves are not truly linear.
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To begin the analysis of the intercept correction term,
consider a representative one-dimensional moment deflection
curve shown in Fig. 3. The horizontal axis is the control
effector position, §, while the vertical axis is the moment
produced by the control effector, g5. At the operating points,
01 and &5, the control effectiveness is given by the slopes by
and bo, while the intercepts of the moment axis are €; and
€2. In the linear control allocation problem, the moment axis
intercepts are zero, as shown by the slope b; and b, control
effectiveness lines that pass through the origin. When the
control is operating at the position given by J; (see Fig. 4),
the effectiveness is given by the tangent to the moment-
deflection curve at that operating condition. In a purely linear
control allocation problem, this slope is translated along the
vertical axis until it intersects the origin and, as shown in
Fig. 4, can have adverse effects on the computation of §
required to provide the desired moment. Here, we begin
by assuming that the control is currently operating at &
and draw the tangent to the moment-deflection curve at that
point and also translate this tangent line to the origin. When
the next moment command is provided, assume that the
command is gs, .. If the control allocation algorithm had
perfect knowledge of the moment-deflection curve, then the
algorithm could accurately compute 6per rect as the required
control position to produce the desired moment. However,
in a linear (or affine) allocation problem, only moment-
deflection slopes are available to the allocation algorithm. If
the linear case is utilized, then a large error exists between
Operfect and the position computed using linear information,
Olinear- On the other hand, if an affine representation of
the moment-deflection curve is utilized, the error between
Operfect and dqffine is much less than the error between
Oper fect and Ojineqr. Hence, this method can produce signitf-
icantly more accurate results for the computation of 9.

It should be noted that the affine method is well suited
to algorithms which obey the rate limits of the effectors
and are implemented in digital computers. The rate limits
and digital implementation essentially limit the distance
a control effector can travel in one timestep. Therefore,
even if operating in a nonlinear region of the moment-
deflection curve, the rate limit restrictions allow the control
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Fig. 4. Linear Versus Affine Control Effectiveness.

effectiveness (tangent of moment-deflection curve) to be an
accurate representation of the nonlinear curve.

IV. CONCLUSIONS

This work provided an overview of some of the techniques
used to address the linear control allocation problem. Meth-
ods to reduce the dimension of the control effector space,
such as, explicit ganging and daisy chaining, were presented.
More sophisticated algorithms, that take into account control
effector rate and position limits, were also discussed. In these
cases, linear programming has proved to be a viable method
for solving online control allocation problems.
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